Graph Polynomials and Their Applications II: Interrelations and Interpretations
نویسنده
چکیده
A graph polynomial is an algebraic object associated with a graph that is usually invariant at least under graph isomorphism. As such, it encodes information about the graph, and enables algebraic methods for extracting this information. This chapter surveys a comprehensive, although not exhaustive, sampling of graph polynomials. It concludes Graph Polynomials and their Applications I: The Tutte Polynomial by continuing the goal of providing a brief overview of a variety of techniques defining a graph polynomial and then for decoding the combinatorial information it contains. The polynomials we discuss here are not generally specializations of the Tutte polynomial, but they are each in some way related to the Tutte polynomial, and often to one another. We emphasize these interrelations and explore how an understanding of one polynomial can guide research into others. We also discuss multivariable generalizations of some of these polynomials and the theory facilitated by this. We conclude with two examples, one from biology and one from physics, that illustrate the applicability of graph polynomials in other fields.
منابع مشابه
Graph Polynomials and Their Applications I: The Tutte Polynomial
We begin our exploration of graph polynomials and their applications with the Tutte polynomial, a renown tool for analyzing properties of graphs and networks. This two-variable graph polynomial, due to W. T. Tutte [Tut47,Tut54, Tut67], has the important universal property that essentially any multiplicative graph invariant with a deletion/contraction reduction must be an evaluation of it. These...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملSome Graph Polynomials of the Power Graph and its Supergraphs
In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملOmega and PIv Polynomial in Dyck Graph-like Z(8)-Unit Networks
Design of crystal-like lattices can be achieved by using some net operations. Hypothetical networks, thus obtained, can be characterized in their topology by various counting polynomials and topological indices derived from them. The networks herein presented are related to the Dyck graph and described in terms of Omega polynomial and PIv polynomials.
متن کامل